- 作者:阮一峰
- 原文链接:异或运算 XOR 教程
大家比较熟悉的逻辑运算,主要是"与运算"(AND)和"或运算"(OR),还有一种"异或运算"(XOR),也非常重要。
本文介绍异或运算的含义和应用。
一、含义
XOR 是 exclusive OR 的缩写。英语的 exclusive 意思是"专有的,独有的",可以理解为 XOR 是更单纯的 OR 运算。
我们知道,OR 运算的运算子有两种情况,计算结果为true
。
(1)一个为 true,另一个为 false;
(2)两个都为 true。
上面两种情况,有时候需要明确区分,所以引入了 XOR。
XOR 排除了第二种情况,只有第一种情况(一个运算子为true
,另一个为false
)才会返回 true,所以可以看成是更单纯的 OR 运算。也就是说, XOR 主要用来判断两个值是否不同。
XOR 一般使用插入符号(caret)^
表示。如果约定0
为 false,1
为 true,那么 XOR 的运算真值表如下。
1 2 3 4 5
0 ^ 0 = 0 0 ^ 1 = 1 1 ^ 0 = 1 1 ^ 1 = 0
二、运算定律
XOR 运算有以下的运算定律。由于非常简单,这里就省略证明了。
(1)一个值与自身的运算,总是为 false。
1 2
x ^ x = 0
(2)一个值与 0 的运算,总是等于其本身。
1 2
x ^ 0 = x
(3)可交换性
1 2
x ^ y = y ^ x
(4)结合性
1 2
x ^ (y ^ z) = (x ^ y) ^ z
三、应用
根据上面的这些运算定律,可以得到异或运算的很多重要应用。
3.1 简化计算
多个值的异或运算,可以根据运算定律进行简化。
1 2 3 4 5
a ^ b ^ c ^ a ^ b = a ^ a ^ b ^ b ^ c = 0 ^ 0 ^ c = c
3.2 交换值
两个变量连续进行三次异或运算,可以互相交换值。
假设两个变量是x
和y
,各自的值是a
和b
。下面就是x
和y
进行三次异或运算,注释部分是每次运算后两个变量的值。
1 2 3 4
x = x ^ y // (a ^ b, b) y = x ^ y // (a ^ b, a ^ b ^ b) => (a ^ b, a) x = x ^ y // (a ^ b ^ a, a) => (b, a)
这是两个变量交换值的最快方法,不需要任何额外的空间。
3.3 加密
异或运算可以用于加密。
第一步,明文(text)与密钥(key)进行异或运算,可以得到密文(cipherText)。
1 2
text ^ key = cipherText
第二步,密文与密钥再次进行异或运算,就可以还原成明文。
1 2
cipherText ^ key = text
原理很简单,如果明文是 x,密钥是 y,那么 x 连续与 y 进行两次异或运算,得到自身。
1 2 3 4 5
(x ^ y) ^ y = x ^ (y ^ y) = x ^ 0 = x
3.4 数据备份
异或运算可以用于数据备份。
文件 x 和文件 y 进行异或运算,产生一个备份文件 z。
1 2
x ^ y = z
以后,无论是文件 x 或文件 y 损坏,只要不是两个原始文件同时损坏,就能根据另一个文件和备份文件,进行还原。
1 2 3 4 5 6
x ^ z = x ^ (x ^ y) = (x ^ x) ^ y = 0 ^ y = y
上面的例子是 y 损坏,x 和 z 进行异或运算,就能得到 y。
四、一道面试题
一些面试的算法题,也能使用异或运算快速求解。
请看下面这道题。
一个数组包含 n-1 个成员,这些成员是 1 到 n 之间的整数,且没有重复,请找出缺少的那个数字。
最快的解答方法,就是把所有数组成员(A[0] 一直到 A[n-2])与 1 到 n 的整数全部放在一起,进行异或运算。
1 2
A[0] ^ A[1] ^ ... ^ A[n-2] ^ 1 ^ 2 ^ ... ^ n
上面这个式子中,每个数组成员都会出现两次,相同的值进行异或运算就会得到 0。只有缺少的那个数字出现一次,所以最后得到的就是这个值。
你可能想到了,加法也可以解这道题。
1 2
1 + 2 + ... + n - A[0] - A[1] - ... - A[n-2]
但是,加法的速度没有异或运算快,而且需要额外的空间。如果数字比较大,还有溢出的可能。
下面是一道类似的题目,大家可以作为练习。
一个数组包含 n+1 个成员,这些成员是 1 到 n 之间的整数。只有一个成员出现了两次,其他成员都只出现一次,请找出重复出现的那个数字。
五、参考链接
(完)